
Assessment 2 - Architecture
www.teampochard.co.uk!

Architectural Model !
We found UML 2.0 was adequate at expressing the structure of our architecture without any
need to define additional notation so we will continue to use the language along with
Lucidchart, the modelling tool we used in the first deliverable. We will continue with Lucidchart
as we have seen no evidence to suggest any other tool would be more appropriate. To aid the
creation of our UML diagrams and to visualise the structure of the current state of the code we
have used a plugin for the IntelliJ IDE called Code IRIS which generates a UML diagram based
on references and usages in the source code. We found this tool useful when comparing our
current source code to our abstract UML diagram. Labels such as “<<abstract>>” will be used
any situation where standard UML 2.0 can’t express an important feature of the architecture.
There will be further discussion over the exact architecture of the ItemManager and
SkillManager class which we could not express without adding the attributes of the classes. !!!!!!!!!!

Figure 1. The
abstract class
diagram which was
built on top of.

!!!!!!!!
Figure 2. An
overview of
the general
structure of
our
architecture. !
!
!

 Team Pochard Page � of �1 5

Architecture: Update

http://www.teampochard.co.uk

Assessment 2 - Architecture
www.teampochard.co.uk!!!!!!!!!!!!!!!

Figure 3. The WorldScreen
expanded. !!

Figure 4. The BattleScreen expanded including the PartyManager structure. !!!!!!!
 Team Pochard Page � of �2 5

http://www.teampochard.co.uk

Assessment 2 - Architecture
www.teampochard.co.uk

Abstract Architecture
This abstract architecture is a revision on the architecture submitted for Assessment 1,
removing the detail regarding the types of relationships between classes and the
multiplicities after receiving feedback. This is where we have built our concrete architecture
on top of. The general structure of our architecture comes from splitting the OurGame into
the two separate sections of the game, exploring a game world (WorldScreen) and battling
with enemies (BattleScreen). We tried to carry this principle of loose coupling throughout our
concrete architecture as it is one of our modularity requirements (25) [1]. !
Overview
The basic structure of having the OurGame class containing a group of managers, the assets
and a Screen for each distinct part of the game has not changed much. ItemManager and
SkillManager now use the Singleton design pattern. Although the two classes don’t have a
private constructor we use the principle of having one instance of the class which contains
static methods to get instances of the Skill and item (Equipable and Consumable) classes.
Singletons are often criticised for keeping a global state making it hard to test reliably
however we keep the state of our attributes constant so the order of testing will not have an
effect on the result [2]. The advantage to using this pattern was readability and avoiding a
scenario where multiple instances of the exact same skill would belong to different Agent
instances, wasting memory. This relates to the performance of the game seen in requirement
16. We introduced the JsonLoader class which allows us to load in the state for the
ItemManager, SkillManager and PartyManager. We used Json files to store the Items and
Skills since it allowed us to quickly change attributes of certain skills or items without hard
coding each one into the source code. We also load in the current party which serves as a
form of save state which contains the party members (Agent class) statistics. Other classes
added include Consumable, Equipable and Skill. Consumable and Equipable are the two
types of items currently implemented in the game, each having a different behaviour when
used in battle. The StartScreen class is a new class that renders the starting splash screen and
changes to the WorldScreen when an input is given. !
PartyManager
The PartyManager would appear to be largely the same as the abstract diagram however an
important part of the architecture is actually going on in this class. The PartyManager contains
two lists of integers IDs representing the Consumable and Equipable items in the party’s
inventory, we didn’t represent this on the UML diagram because this would require attributes
being added. Similarly the Agent class has Skills stored in this exact same manner. The
reasoning behind this decision was to keep only a single instance of each object in a central
and easily accessible place instead of having the scattered across many instances of the
Agent class. No friendly or enemy class as their behaviour did not differ from each other and
the standard agent class. !
WorldScreen
A change compared to the UML diagrams is the addition of Character class that serves a
similar purpose as the Agent class in the BattleScreen section of the architecture. One
consideration we thought of was to use the Agent class to represent the game characters in
both the BattleScreen and WorldScreen as the information for each character could be easily
shared however this would have led to tight coupling which can cause poor maintainability

 Team Pochard Page � of �3 5

http://www.teampochard.co.uk

Assessment 2 - Architecture
www.teampochard.co.uk

and readability of code [3]. The WorldUI class no longer exists but has been replaced by a
UIManager class. They serve a similar role keeping track of many UIComponents which a
UIRenderer can then access. We added the UIRenderer to try and keep closer to the principle
of single responsibility and not letting the WorldRenderer deal with the map, characters and
UI [4]. We decided to make a separate class for battle parameters to help the readability of
the code. In a language like C++ we could create a Struct and have no need to create a new
class however this is a limitation of using Java as our programming language and an example
of how our language has influenced our architecture. We are storing multiple characters in
the level including the player and NPCs as well as having the player also stored in a separate
variable. We did this so we could iterate through each of the characters in the scene and call
some function for each character as well as not having to search through a potentially large
list of characters for the player. For very little extra memory this structure is much more
efficient. Both Renderer classes access the assets needed to draw the scene directly through
static fields / getters and setters in the Assets class. We felt our solution worked best for a
large system where multiple renderers would need access to this class and made writing the
code slightly quicker and more readable in the end. The UIComponent, UIManager and
UIRenderer are all new classes we introduced to help render and traverse through the UI.
These three classes will be discussed in the UI section in further detail. !
BattleScreen
We have removed the battle renderer class as we didn't need the extra functionality in a
mostly static battle scene. The reason we required the WorldRenderer class over the camera
class provided by the libGDX library was mainly due to needing to render the tiled map
along with the UI and list of characters. The new class BattleMenu is essentially serving the
same purpose as the BattleUI class in the abstract diagram. Two new classes are called
UseAbility and BattleAnimator: the role of a child of the UseAbility class is to pass information
about the move each agent makes to the BattleMenu, BattleAnimator and BattleScreen.
UseAbility itself is an abstract class which is inherited from UseItem and UseSkill. These are
the two types of actions an agent can do in its turn. This enables the functionality specified in
requirement 7.5 and is the core mechanic in our battle system. The class contains information
about the user, the target and the skill or item id. The BattleAnimator class manages the
positions of each of the agents and animates them while they are using an ability (skill/item). !
UI
The architecture of the UI in both the WorldScreen and BattleScreen was not considered in
the abstract diagram due to avoiding excessive detail. I have excluded the diagram of all the
classes that inherit from the UIComponent class due to page restrictions and the simplicity of
the relationships. The UIComponent class is the class which all other UIComponents inherit
from. A child of UIComponent has the job of drawing a certain kind of UI to the screen. The
reasoning behind this structure is allowing one data structure to hold many UIComponents
and being able to render them by going through the data structure and calling the draw
function for each component. This makes the code more maintainable and allows the
addition of different UIComponents with greater ease. The UIManager class has the job of
containing all the different UIComponents and allowing the UIRenderer to access them and
call their draw methods. This decision was influenced by the principle of having one class
have one purpose. !
 Team Pochard Page � of �4 5

http://www.teampochard.co.uk

Assessment 2 - Architecture
www.teampochard.co.uk

Bibliography !
[1] S. McConnell, Code Complete, 2nd ed. New York: O'Reilly Media, Inc., 2004, p. 80.
[2] J. Rainsberger, "Use your singletons wisely", Ibm.com, 2016. [Online]. Available: http://
www.ibm.com/developerworks/library/co-single/. [Accessed: 19- Jan- 2016].
[3] R. Pressman, Software engineering, 5th ed. Boston, Mass.: McGraw-Hill, 2000, pp. 352
-355.
[4] R. Martin, Agile software development. Upper Saddle River, N.J.: Prentice Hall, 2003, p. 95.

 Team Pochard Page � of �5 5

http://www.teampochard.co.uk

