
Class Diagram

State Diagram

  

Team PochardArchitecture Report

1
Architecture
www.teampochard.co.uk

http://www.teampochard.co.uk
http://www.teampochard.co.uk

Activity Diagram

The above UML 2.0[1] diagrams illustrate the concrete architecture of the initial implementation of our
game. UML 2.0 was chosen as it is a well-defined standard way of expressing software architectures, and
as such using it likely negates the need for any future maintainers of our code to learn another modelling
language in order to understand the diagrams. The class diagram shows how the concrete Java classes in
our game are related, including how they inherit from each other (“is-a” relationships) and where classes
are composed of other classes (“has-a” relationships). The state diagram shows a representation of the
different screens a user could be presented with in the game, and what is required to transition between
them. The activity diagram gives a high-level representation of the operation of our game, and what
happens when the victory/loss conditions are met.

All diagrams were created using an online chart drawing tool called Lucidchart[2]. Lucidchart supports a
large range of UML symbols, as well as other notations. Note that the omission of end symbols from both
the state and activity diagrams was due to there not being an exit button implemented in the game. A
user can still exit the game at any time by closing the game window, however we did not indicate this on
the diagrams as it is not strictly part of the system.

Changes for Assessment 3
The changes in the concrete architecture are all highlighted in green in some way. The introduction of the
PowerupManager (CA6) class handles multiple powerups at the same time instead of just having one. The
introduction of a new objective, KillObjective which inherits from Objective in the same way
CollectObjective does. The other objective type is BossObjective (CA10) which also inherits from
Objective. The introduction of FloatyNumbers (CA1) and FloatyNumbersManager are used to keep track
of the numbers such as score and damage which will be rendered when the player damages or gets
damaged or scores points FloatyNumbersManager manages this for the Round class.
OpeningCrawlScreen (CA9) is a class whose sole purpose is to render the opening animation and then
move onto the StartScreen when finished, the state diagram has been changed to show this, the activity
diagram has been left and just continues from after the OpeningCrawlScreen switches to the StartScreen.
The last additions are three new AI classes. RangedAI is for a constant follow and shoot type of enemy,

2
Architecture

www.teampochard.co.uk

http://www.teampochard.co.uk
http://www.teampochard.co.uk

MovementAI (CA3) is for a stop and shoot type of enemy and BossAI (CA10) is the AI responsible for the
final boss enemy. FinalWinScreen is used to take the player back to the start screen and display player
score. With the addition of rounds being fully implemented in the game the state diagram and activity
diagram both required changing to reflect this. Now when you win a round you will be taken to the
GameScreen again to play the next round or if all rounds have been completed you will be taken to the
FinalWinScreen.

Justification
For the most part, the concrete architecture follows what was set out in the abstract architecture, with
several key changes. In the class diagram for the abstract architecture, there are classes for Tile,
Spritesheet, Sprite and Font which are not present in the concrete architecture. This is because the abstract
architecture was created with implementing our own game engine in mind. However, after consideration
we decided not to implement our own game engine and instead use an existing one that has map and
sprite rendering built in, thus eliminating the need for these classes. The class named Game in the
abstract architecture was changed to DuckGame as there was already a class called Game in the game
engine library (which DuckGame inherits). DuckGame is the entry point to the game and contains all of
the screen classes. Display has been changed to GameScreen in order to be consistent with the new
classes StartScreen, WinScreen and LoseScreen. These classes represent the possible different screens the
user could be displayed with, including screens for when the winning/losing conditions have been
achieved (as per requirement G12). GameScreen itself is responsible for rendering the actual gameplay
part of the game and for maintaining the game loop, which is shown in the activity diagram. The
transition between these screens is shown in the state diagram. Menu has been removed as the initial
implementation only has one map and objective type, so there is no point in having a menu to choose
from; however, the game architecture allows for a menu to be added at a later stage.

The Round class contains the core logic for the game, maintaining a list of entities as well as storing the
current objective and game map. This is where the progress toward the objective is checked and all
entities are either updated or deleted each game loop. When the associated objective is complete, the
round is over and the player wins (according to requirement G1). Each Entity is an object within the game,
having a position and optionally a velocity at which it moves. Collision detection also takes place in the
Entity class. Entity is an abstract class, as having just an entity without other properties is meaningless. It is
inherited by four other classes: Character, Item, Particle and Projectile. The Character class adds health,
facing direction and functionality for attacking. Both Player and Mob inherit from Character. Player
represents the player controlled duck in the game, and stores the player’s current score (requirement G4)
and any possible powerups/upgrades the player may have obtained (requirements G9 and G10). The
Player class also handles the player’s movement and attack via input from the keyboard (requirement C1).
The Mob class replaces NPC in the abstract class diagram. This is because we originally planned to have a
shopkeeper character in the game where the player could buy new weapons, but this was not
implemented in the initial implementation, so NPC was changed to Mob to reflect the fact that the only
non-player characters in the game were aggressive towards the player. This is also the reason that the
Shop class from the abstract architecture is not present in the concrete architecture. The Mob class
represents an enemy that will attack the player, serving as an obstacle between the player and the
objective (requirements G7 and G8). Each Mob has an associated AI which defines its attacking behaviour.
The two types of AI present in the initial implementation are the ZombieAI and DummyAI. This decoupling
between the Mob and its attacking behaviour allows for easy implementation of different attack
behaviours in the future without having to modify the Mob class. Projectile is another class that inherits
from Entity. It represents a bullet in the game that applies damage upon impact with a Character. This
could be fired from the player’s gun upgrade or potentially by an enemy.

3
Architecture
www.teampochard.co.uk

http://www.teampochard.co.uk
http://www.teampochard.co.uk

Particle represents a small animation with a limited duration used for graphical effect, e.g. when a
Projectile hits a wall. Item represents an object on the map to be collected by the player. This could be an
objective, a health kit, etc. Two special types of items, Upgrade and Powerup inherit from Item. Upgrade is
an item on the map which when collected grants the player an upgrade, which alters their weapon
(requirement G10). Upgrades are permanent. Powerup is an item which when collected grants a
temporary boost to one of the player’s stats (for example double speed for 10 seconds), therefore making
it easier to achieve the objective. (requirement G9). Progress towards the objective is stored in the Round
class.

The objective itself is represented in the code by the Objective abstract class. This class contains methods
to retrieve and update the current status towards the objective - these are both called in the game loop
(as per the activity diagram). The Objective class is abstract in order to support different types of objective
(requirement G2). The objective that we have implemented in the game is represented by the
CollectObjective class, which involves collecting an item while avoiding/killing the enemies attacking you.
Other types of objective e.g. “kill 100 enemies” could be easily implemented in the future by extending
the Objective class. The Assets class is never instantiated, but instead provides a central location for all of
the game assets to be loaded in. This way of loading assets ensures that all required assets are loaded
before the game starts, and allows assets to be shared between all classes. TextureSet brings together all
of the idle and walking textures used by Characters and provides a method to get the appropriate texture
to use depending on the facing of the character and whether it is moving or not. This prevents the Assets
class from being cluttered with too many idle/walking textures.

[1] Object Management Group, "Unified Modeling Language: Infrastructure", 2006. [Online]. Available:
http://doc.omg.org/formal/2005-07-05.pdf. [Accessed: 12- Feb- 2016].
[2] Lucidchart, "Flow Chart & Diagram Maker - Lucidchart". [Online]. Available: http://
www.lucidchart.com/. [Accessed: 10- Feb- 2016].

4
Architecture

www.teampochard.co.uk

http://www.teampochard.co.uk
http://www.teampochard.co.uk

