
Assessment 4 Architecture Changes 
Architecture largely stayed the same and small additions and tweaks were made as 
necessary to meet our requirements. 

ID Affected class(es) Explanation

AR1 Cheat, 
CheatInputHandler, 
(PauseMenu)

Cheat is an abstract class which should be extended by classes, 
this allows the CheatInputHandler class to call functions of each 
Cheat subclass such as activate. One instance of a Cheat 
subclass is associated to each handler instance and there are 
multiple handler instances in the PauseMenu class (AR4)

AR2 CheatExplosiveBullet, 
CheatBouncingDuck

Both inherit from the Cheat class and relate to requirement G15. 
These subclasses are used to implement specific cheats.

AR3 DemenetedPlayer, 
Player

The DemenetedPlayer class contains all the methods and 
variables to handle when the player should become demented and 
how it should behave. This class keeps stores the Player instance 
which it is affecting. Relates to requirement G14. 

AR4 PauseMenu The addition of the PauseMenu class was required firstly to allow 
a pause state in which the player could safely enter cheat codes 
and so relates to requirement G15. The secondary function of the 
PauseMenu is to allow the player to transition from the game 
screen to the start screen or to quit the game. A PauseMenu is 
instantiated and kept within the the round class. Relates to 
requirement G15

AR5 MenuClouds Addition of MenuClouds class which handles the generation and 
rendering of floating cloud sprites on the various menu screens. 
Relates to requirement S2 specifically the aesthetics. MenuClouds 
is part of DuckGame instead of each of the menu screen classes 
since we wanted the state of the clouds to persist throughout the 
various menu screens.

AR6 FloatyNumber, 
FloatyNumberManag
er, AnimatedText

FloatyNumber and FloatyNumberManager classes were added as 
a replacement of AnimatedText. Splitting the AnimatedText class 
into two classes made the class easier to modify and get the 
behaviour we wanted. FloatyNumberManager has multiple 
FloatyNumber instances which it updates and renders. Relates to 
requirement S2 

AR7 KillObjective The addition of a new Objective subclass, this change was not 
made in response to meeting any requirements except to make 
the game more fun S2. No architectural modification beyond the 
introduction of this class were made. 

Team PochardArchitecture



Assessment 4 UML Diagram 



Assessment 3 Architecture Changes 

● Addition of a LevelSelectScreen as a screen which can be accessed from the 
StartScreen. This change was made to meet requirement G1. Like other screens 
LevelSelectScreen inherits from the LibGdx Screen class. 

● CompleteScreen was added to signify the end of the game and was made to meet 
requirements S4 and S2. Also inherits from LibGdx Screen Class. 

● Addition of a SettingsScreen which was added to control volume, other settings 
can be added later also inherits from LibGdx Screen class. 

● Addition of a SurviveObjective to the architecture to meet the requirements of two 
different types of objectives G2. This class is similar to the CollectObjective in that 
it inherits from the Objective class. 

● Addition of BossAI to allow different types of enemies and obstacles, requirement 
G2 and S2 since the variety makes the game more attractive. Simlar to ZombieAI 
and DummyAI, BossAI inherits from AI. 

● Addition of a Minimap class. An instance of this is kept inside the GameScreen 
where it is used to render a working Minimap graphic. Requirement I4. 

● Addition of AnimatedText kept in the DuckGame class used to render and 
generate animated text. 



Assessment 3 Architecture UML diagram 



UML and Lucidchart 

The above UML 2.0[1] diagrams illustrate the concrete architecture of the initial 
implementation of our game. UML 2.0 was chosen as it is a well-defined standard way of 
expressing software architectures, and as such using it likely negates the need for any 
future maintainers of our code to learn another modelling language in order to 
understand the diagrams. The class diagram shows how the concrete Java classes in our 
game are related, including how they inherit from each other (“is-a” relationships) and 
where classes are composed of other classes (“has-a” relationships). The state diagram 
shows a representation of the different screens a user could be presented with in the 
game, and what is required to transition between them. The activity diagram gives a high-
level representation of the operation of our game, and what happens when the victory/
loss conditions are met. 

All diagrams were created using an online chart drawing tool called Lucidchart[2]. 
Lucidchart supports a large range of UML symbols, as well as other notations. 

Any associations or classes highlighted in green have been added after assessment 3 for 
assessment 4 this only included on the assessment 4 diagram on the following page. 

Bibliography 

[1] Object Management Group, "Unifed Modeling Language: Infrastructure", 2006. 
[Online]. Available: http://doc.omg.org/formal/2005-07-05.pdf. [Accessed: 12- Feb- 
2016]. 

[2] Lucidchart, "Flow Chart & Diagram Maker - Lucidchart". [Online]. Available: http://
www.lucidchart.com/. [Accessed: 10- Feb- 2016]. 


