
The password text box has a

password character to

improve security

The button allows the

information of the table to be

changed

The two tables will be

relational and linked by

the “Room ID” field.

The Room ID field is the

primary key for the

room table and the

foreign key for the

defects table

When the user selects a defect, the related room is

selected on the room table. When a room is selected in

the room table, the first defect for that room on the

defects table is selected

This button is only

visible and enabled

when the user is on an

admin account

Controls for sorting and

filtering

The exit button closes

the program

Filtering is applied as the user

enters information, removing the

need for an extra button

Each room can be dragged

around when editing is

enabled

Design

Login Form

Tables View Form

Room ID

Room Type

Room Desc

Defect Num

Room ID

Category

The login button takes a

regular user to the

Building Plan Form and

an admin user to the

Admin Menu Form

This area is used to

display the building plan

Information about the

currently selected room is

displayed here

Buttons for adding and

viewing defects or printing a

report

The button is only visible and

enabled to admin users and

shows the controls in the box

which allow the user to edit

the building plan

Building Plan Form

A1 A2

B1 B1

A3

B1

Example of 6 rooms in

the building plan

The room you are adding a

new defect for

The dropdown menus acts as

a form of validation, limiting

to certain data

When a defect is added, the

user is asked if they want to

add another defect for the

same room

Buttons to give access to

page setup and allow the user

to print the report

The report will contain

calculations such as the

number of defects

solved per week

The date entry is using a calendar

as a form of validation. Limiting

entered data to real dates only

Add New Defect Form

Report View Form

This is the form the user is

first brought to after logging

into an admin account.

It allows access to all the

forms including access to the

user table to add or edit user

records.

When on other forms, when

logged in as an admin, the

“enable editing” buttons will

be visible and enabled

Button to enable the editing

of records

The only way to access this page

is through the admin menu

Admin Menu Form

User Table Form

Files and data structures

I will be using three relational tables. RoomTable, DefectTable and UserTable. The DefectTable will be the

parent of both the RoomTable and the UserTable.

Room Table

Field Name Data type Description Length Example

(Primary Key)
Room ID

String A unique ID for each
room. Will typically be
the name/ number of
the room

25 “E44” or “Connel
Room”

Room Type

String The type of room 30 “Bedroom”,
“Lab”, “Office”

Room Description String A description of the
room for further
identifying qualities.

150 “The fourth room
on the right with
the large red
doors”

Defect Table

Field Name Data type Description Length Example

(Primary Key)
Defect number

Integer A unique, auto
incrementing
integer for

8 1, 2, 3 etc.

(Foreign Key)
Room ID

String The ID of the
room the defect
is for

25 “E44” or “Connel
Room”

Type String The type of defect
the defect is

15 “Building Works”,
“FFE”

Priority String The priority of the
defect

8 “Critical”,
“Urgent”, “High”,
“Normal”, “Low”

Description String A description as
to what the
defect is

100 “Light does not
work”, “Window
is cracked”

Date found Date The date the
defect was found

15 “12/11/13”

Date resolved Date The date the
defect was
resolved

15 “17/12/13”

(Foreign Key)
UserID

String The username of
the user who
added the defect

20 “RJones”

User Table

Field Name Data type Description Length Example

(Primary Key)
UserID

String A unique id for
each user

20 “RJones”

Password String The password for
the user to login
with

25 “GreenRadiatorCamel”

Email String The email
address of the
user

40 “RJones@company.com”

Tel Number String The telephone
number of the
user

11 “01436268874”

User Level String The Level of the
user

5 “User”, “Admin”

A JSON file will also be used. It will store 5 pieces of information: name, locationX, location, SizeX, SizeY

and penColor.

Below is an example of data stored in the JSON file:

 {
 "name": "E1",

 "locationX": 27,

 "locationY": 250,

 "sizeX": 200,

 "sizeY": 200,

 "penColor": "default"

 },

The data from the JSON file is then deserialised into a list of a custom class objects with these properties:

Variable name Data type

Name String

location Integer

location Integer

SizeX Integer

SizeY Integer

penColor Integer

So the structure of the list is such:

rectangleList[

 [0]

rectangle[

 name

 locationX

 locationY

 SizeX

 SizeY

 penColor

]

[1]

rectangle[

 name

 locationX

 locationY

 SizeX

 SizeY

 penColor

]

]

The name of the class is “rectangle”

The name of the list is “rectangleList”

List for Combo Boxes – Implemented as arrays

On the “Add New Defect” form, there are two combo boxes used for input. The data structures behind

these boxes are as follows:

defectTypeComboBox:

 “Building Works”

 “FFE”

 “M and E”

priorityComboBox:

 “Critical”

 “Urgent”

 “High”

 “Normal”

 “Low”

Methods of access

I will be using an SQL Server Express database which allows for the database to be accessed across a

network which will be important for my solution. The DBMS I will be using is the “.NET Framework Data

Provider for SQL Server” The DBMS will assist with manipulating data in the database by providing

methods for adding and editing data as well as preventing database corruption and errors. It also

simplifies the otherwise complex tasks involved in connecting to

the database.

The file access I will be using will be indexed sequential. This will

allow the location of a file through checking each record but will

also allow the location of records using indexes, speeding up

access times. This will be used for all three tables – RoomTable,

DefectTable and UserTable- as sorting and filtering will be useful

for all tables as there will be a large number of records to sort and filter through.

Visual Studio 2012 SQL Server Database

(.MDF)

.NET Framework Data

Provider for SQL Server

Database

File

Validation

For validating data entered into the system, I will use regular expressions(Regex). A regular expression is

a text string for describing a search pattern. I will check entered data against the regular expression

containing the desired format for the entered data. If the data matches the regular expression then the

data is validated.

Size and Position of rooms on the building plan

I will use a regular expression to make sure the entered data is a number. An example of the Regex I will

use is this: (^\d$)

IF(data IS number) THEN

 throw error

ENDIF

New defect form

A presence check will be performed on each data entry control to make sure data has been entered or

selected for each. The presence check will check to see if there is at least one character (excluding spaces)

entered in the field.

If(data IS all white space OR IS empty) THEN

 throw error

ENDIF

For the date entry, I will use a date picker which limits the user to entering only real dates, providing a

form of validation.

There is a textbox for entering a description for the defect. I will not apply validation other than the

presence check to the textbox as the description is allowed to be anything, but there must be a

description.

All other data entries for adding a new defect are done by the use of dropdown lists which limit the user

to entering certain values.

New Room Form

I will check that there is data entered in each textbox not including whitespaces. I will trim the contents of

the textbox which ignores whitespaces and if this results in the textbox being empty then there was no

data in the textbox

New User Form

I will use two Regular Expressions, one for phone numbers and one for email addresses. These regexes

will only match with data that is a valid phone number or a valid email

Filtering on Table View Forms

Validation will be applied to the textbox where the filter data is typed dependant on which field has been

selected to be filtered by. If the field is a number-only field, I will validate to make sure the entered data

contains only numbers else this can cause a runtime error.

IF(field IS number only field AND data NOT number) THEN

 throw error

ENDIF

Processing Stages

System Flowchart

Pseudocode

Login Form

Procedure LoginFormLoad

 Boolean fileIsFound = false

 CREATE Regular Expression called pathRegex to match with text that contains “rectanglesOut.json”

 FOREACH String in Global path variable

 CREATE variable currentString of type String = currentString from Foreach

 IF pathRegex matches with currentString THEN

 Global variable JSONPath = currentString

 fileIsFound = true

 ENDIF

 END FOREACH

 IF !fileIsFound THEN

 SHOW MessageBox stating the file could not be found and asking if the user wants to generate one

 IF MessageBox result = yes THEN

 CREATE a List of type rectangle called tempRectangles

 Int I = 0

 WHILE I <= number of rows in RoomTable DO

 CREATE a new rectangle with name from current row’s RoomID value

 ADD rectangle to tempRectangles

 i++

 END WHILE

 Serialise tempRectangles into JSON and write it to a new JSON File

 SHOW MessageBox stating that the file has been created and that the program will CLOSE

 CLOSE Program

 ENDIF

 ENDIF

END Procedure

Procedure LoginButtonClick

Variable Row = Find user record from database

 IF Password Text Box = Password from Record THEN

 String userlevel = Userlevel from Record

 IF Userlevel from Record = “Admin” THEN

 SHOW AdminMenuForm

 Hide LoginForm

 ENDIF

 IF Userlevel from Record = “User” THEN

 SHOW AdminMenuForm

 Hide LoginForm

 ENDIF

ENDIF

ELSE

 SHOW error message “The username or password was incorrect”

ENDIF

END Procedure

Building Plan Form

Procedure BuildingPlanForm

Boolean editingEnabled = false

Class rectangle

 String name

 Integer locationX

 Integer locationY

 Integer sizeX

 Integer sizeY

 String penColor

END Class

List of type rectangle rectangles

Integer mouseOffsetX

Integer mouseOffsetY

String currentRectangleName = “”

CREATE variable numberRegex of type RegularExpression of regular expression “^[0-9]+$”

Procedure BuildingPlanForm Load

 IF userlevel IS NOT “admin” THEN

 Hide and disable controls

 ENDIF

 IF userlevel IS “admin” THEN

 SET controls.enabled = editingEnabled

 ENDIF

 Disable viewDefectsBtn

 Disable newDefectBtn

 pictureBox1.WaitToLoadImage = true

 CREATE variable sr of type StreamReader with path of rectangle information json file

 String rectangleJSON = sr.ReadToEnd

 CREATE variable serialiser of type JavaScriptSerialiser

 rectangles = serialiser.Deserialise rectangleJSON Into form of List of type rectangles

 CLOSE sr

END Procedure

Procedure SaveButtonClick

 FOREACH rectangle in rectangles

 CREATE variable thisrectangle of type rectangle = currentrectangle from Foreach

 thisrectangle.penColor = “default”

 END FOREACH

 String json = serialise the contents of rectangles

 Write json to original json file

END Procedure

Procedure timerTick

 CREATE graphics object for pictureBox1

 CREATE variable defaultPen of type Pen of colour Black and thickness 3.0

 CREATE variable defaultPen of type Pen of colour HotPink and thickness 3.0

 CREATE variable brush of type Brush of colour Black

 CREATE variable font of type Font of font Ariel , size of 13 and style of Bold

 CREATE variable bm of type Bitmap of width pictureBox1.Width and height pictureBox1.Height

 CREATE variable offScreenGraphics of type Graphics fromImage bm

 offScreenGraphics.Clear with colour White

 USING CREATE variable gr of type Graphics fromImage bm

 FOREACH rectangle in rectangles

 CREATE variable thisRectangle of type rectangle = currentrectangle from Foreach

 IF thisRectangle.sizeX <= 10 THEN

 thisRectangle.sizeX = 10

 ENDIF

 IF thisRectangle.sizeY <= 10 THEN

 thisRectangle.sizeY = 10

 ENDIF

 IF thisRectangle.penColor == “default” THEN

 offScreenGraphics.DrawRectangle with values Pen of defaultPen, Position of locationX

and locationY with Size of sizeX and sizeY from thisRectangle

 offScreenGraphics.DrawString with values Text of name, Font of font, Brush of brush,

Location of locationX + (sizeX /2.5) and locationY + (sizeY/2.5)

 ENDIF

 IF thisRectangle.penColor == “pink” THEN

 offScreenGraphics.DrawRectangle with values Pen of selectedPen, Position of locationX

and locationY with Size of sizeX and sizeY from thisRectangle

 offScreenGraphics.DrawString with values Text of name, Font of font, Brush of brush,

Location of locationX + (sizeX /2.5) and locationY + (sizeY/2.5)

 ENDIF

END FOREACH

 END USING

pictureBox1.Image = bm

END Procedure

Procedure picturebox1MouseDown sender variable e

 Disable viewDefectsBtn

 Disable newDefectBtn

 IF e.Button == Left Mouse Button THEN

 FOREACH rectangle in rectangles

 CREATE variable thisRectangle of type rectangle = currentrectangle from Foreach

 thisRectangle.penColor = “default”

 IF currentRectangleName == “” THEN

 IF e.X >= thisRectangle.locationX AND e.X <= thisRectangle.locationX +thisRectangle.sizeX

AND e.Y >= thisRectangle.locationY AND e.Y <= thisRectangle.locationY +thisRectangle.sizeY THEN

 currentRectangleName = thisRectangle.name

 var row = Find row in RoomTable by Room_ID using the variable

currentRectangleName

 roomIDLabel.Text = row.Room_ID

 roomTypeLabel.Text = row.Room_Type

 roomDescLabel.Text = row.Room_Description

 MyGlobals.selectedRoom = thisRectangle.name;

 Integer defectNum = 0

 Integer i = 0

 WHILE i < number of rows in DefectTable DO

 IF DefectTable[i].Value == thisRow.Room_ID THEN

 defectNum++

 ENDIF

 i++

 END WHILE

 numberDefectsLabel.Text = defectNum

 mouseOffsetX = e.X – thisRectangle.locationX

 mouseOffsetY = e.Y – thisRectangle.locationY

 thisRectangle.penColor = “pink”

 RectangleWidthBox.Text = thisRectangle.sizeX as type String

 RectangleHeightBox.Text = thisRectangle.sizeY as type String

 rectangleLocationBoxX.Text = thisRectangle.locationX as type String

 rectangleLocationBoxY.Text = thisRectangle.locationY as type String

 Set viewDefectsBtn to enabled

` Set newDefectBtn to enabled

 ENDIF

 ELSE

 thisRectangle.penColor = “default”

 ENDELSE

 ENDIF

 ENDIF

 END FOREACH

END Procedure

Procedure pictureBox1MouseMove sender variable e

IF e.Button == Left Mouse Button AND editingEnabled != false THEN

 FOREACH rectangle in rectangles

 CREATE variable thisRectangle of type rectangle = currentrectangle from Foreach

 IF thisRectangle.Name == currentRectangleName THEN

 IF e.X >= thisRectangle.locationX AND e.X <= thisRectangle.locationX +thisRectangle.sizeX AND e.Y

>= thisRectangle.locationY AND e.Y <= thisRectangle.locationY +thisRectangle.sizeY THEN

 thisRectangle.locationX = e.X – mouseOffsetX

 thisRectangle.locationY = e.Y – mouseOffsetY

 rectangleLocationBoxX.Text = thisRectangle.locationX as type String

 rectangleLocationBoxY.Text = thisRectangle.locationY as type String

 ENDIF

 ENDIF

 END FOREACH

END Procedure

Procedure pictureBox1MouseUp

 currentRectangleName = “”

 mouseOffsetX = 0

 mouseOffsetY = 0

END Procedure

Procedure rectangleIncrementXClick

 FOREACH rectangle in rectangles

 CREATE variable thisRectangle of type rectangle = currentrectangle from Foreach

 IF thisRectangle.penColor == “pink” THEN

 thisRectangle.locationX += 1

 rectangleLocationBoxX.Text = thisRectangle.locationX as type String

 ENDIF

 END Foreach

END Procedure

Repeat code for decrementX but subtract 1 from thisRectangle.locationX

Repeat both increment and decrement code replacing X by Y

Repeat all 4 for size adjustment buttons changing X and Y for Width and Height

Procedure rectangleLocationBoxXKeyPress sender variable e

 IF e.KeyChar== Return Key THEN

 FOREACH rectangle in rectangles

 CREATE variable thisRectangle of type rectangle = currentrectangle from Foreach

 IF thisRectangle.penColor == “pink” THEN

 IF numberRegex.IsMatch with rectangleLocationBoxX.Text THEN

 thisRectangle.locationX = rectangleLocationBoxX.Text as type Integer

 ENDIF

 ENDIF

 END FOREACH

 ENDIF

END Procedure

Repeat for BoxYKeyPress changing X to Y

Repeat both changing X and Y to width and height

Procedure editButtonClick

 IF editingEnabled == false THEN

 editingEnabled = true

 editControlsGroup.Enabled = editingEnabled

 editBtn.Text = “Disable Editing”

 return

 ENDIF

 IF editingEnabled == true THEN

 editingEnabled = false

 editingControlsGroup.Enabled = editingEnabled

 editBtn.Text = “Enable Editing”

 Return

 ENDIF

END Procedure

Procedure editBtnClick

 IF editingEnabled == false THEN

 editingEnabled = true

 Set enabled state of editControlsGroup to value of editingEnabled

 editBtn.Text = “Disable Editing”

 return

 ENDIF

 IF editingEnabled == true THEN

 editingEnabled = false

 Set enabled state of editControlsGroup to value of editingEnabled

 editBtn.Text = “Enable Editing”

 return

 ENDIF

END Procedure

Procedure viewDefectsBtnClick

 Hide buildingPlanForm

 Disable the timer

 SHOW ViewDefectsForm

 SHOW buildingPlanForm

 Enable the timer

END Procedure

Procedure newDefectBtnClick

 Hide buildingPlanForm

 Disable the timer

 SHOW NewDefectForm

 SHOW buildingPlanForm

 Enable the timer

 Reload Data from the Tables

END Procedure

Procedure buildingPlanFormOnClosing

 Disable the timer

END Procedure

Procedure addRoomBtnClick

Hide buildingPlanForm

 Disable the timer

 SHOW NewRoomForm

 Enable the timer

 Reload Data from the Tables

END Procedure

Procedure deleteBtnClick

 IF SHOW Warning MessageBox Result == Yes THEN

 Remove rectangles with name == roomIDLabel

 var row = Find row in RoomTable by Room_ID using roomIDLabel

 Delete row from table

 Update Table in database

 Int i =0

 WHILE i < number of rows in DefectTable DO

 IF Row[i] Cell[1] == roomIDLabel THEN

 Remove Row[i]

 ENDIF

 i++

 END WHILE

 Update Table in database

 FOREACH rectangle in rectangles DO

 CREATE variable thisRectangle of type rectangle = currentrectangle from Foreach

 pencolor of thisRectangle = “default”

 END FOREACH

 String JSON = Serialise rectangles to JSON

 Write JSON to file

 SHOW MessageBox for confirm deletion

 roomIDLabel = “”

 roomDescLabel = “”

 roomTypeLabel = “”

 numberDefectsLabel = “”

 ENDIF

-----------------------------More goes here?--------------------------------

END Form Procedure

New Defects Form

Procedure NewDefectsForm

Procedure NewDefectsFormLoad

 Load data from Table

 RoomIDLabel.Text = MyGlobals.selectedRoom

 Set selected item in DefectTypeBox to first item

 Set selected item in PriorityBox to second item

 Set max date of Date picker to current date

END Procedure

Procedure DescriptionTBoxTextChanged

 Set back colour of DescriptionTBox to default colour

 IF Length of DescriptionTBox >= 90 THEN

 Set back colour of DescriptionTBox to Coral

 ENDIF

 IF Length of DescriptionTBox == 100 THEN

 Set back colour of DescriptionTBox to OrangeRed

 ENDIF

END Procedure

Procedure DescriptionTBoxEnter

CREATE tooltip object with name TT

Remove all tooltips from screen

SHOW new tooltip with text “Character Limit is 100” on the DescriptionTBox

END Procedure

Procedure DescriptionTBoxMouseClick

CREATE tooltip object with name TT

Remove all tooltips from screen

SHOW new tooltip with text “Character Limit is 100” on the DescriptionTBox

END Procedure

Procedure DescriptionTBoxLeave

 Set back colour of DescriptionTBox to default colour

END Procedure

Procedure cancelBtnClick

 SHOW MessageBox with text “Are you sure you want to cancel?” with title “Cancel?” with Yes and No buttons

 IF Result of MessageBox is Yes THEN

 CLOSE this Form

 ENDIF

END Procedure

Procedure addBtnClick

 Insert new row into table with values from data entered by user

 Update table

 SHOW MessageBox with text “New defect has been added” with title “Success” with OK button

 CLOSE this Form

END Procedure

END Form Procedure

ViewDefectsForm

Procedure ViewDefectsForm

Int SelectedRowIndex

Procedure ViewDefectsFormLoad

 Load data from Database

 Disable ResolveBtn

 String filter

 String token = selectedRoom

 filter = RoomID Like SelectedRoom

 DefectTable Filter = filter

END Procedure

Procedure CLOSEBtnClick

 CLOSE form

END Procedure

Procedure resolveBtnClick

 Int i = 0

 FOREACH row in DefectTable DO

 CREATE variable thisRow of type Row = currentRow from Foreach

 IF RoomID of thisRow == selectedRoom THEN

 break

 ENDIF

 i++

 END FOREACH

 Var row = DefectTable Row[selectedRowIndex + i]

 IF isResolved cell value of row == null THEN

 DateTime previousDate = resolveDate

 SHOW ResolveForm

 IF resolveDate != previousDate THEN

 dateResolved Cell of row = resolveDate

 Update DefectTable

 Reload data from Table

 ENDIF

 ENDIF

END Procedure

Procedure dataGridViewCellClicked

 Enable resolveBtn

 selectedRowIndex = Index of row that was clicked on

END Procedure

END Form Procedure

ResolveForm

Procedure ResolveForm

Procedure ResolveFormLoad

 Maxdate of dateTimePicker = current date

END Procedure

Procedure resolveBtnClick

 resolveDate = dateTimerPicker Value

 CLOSE ResolveForm

END Procedure

END Form Procedure

ViewUsersForm

Procedure ViewUsersForm

Procedure newUserBtnClick

 HIDE ViewUsersForm

 SHOW NewUserForm

 SHOW ViewUsersForm

 Reload data from Table

END Procedure

END Form Procedure

NewUserForm

Procedure NewUserForm

CREATE Regular Expression called EmailRegex for that matches with valid emails

CREATE Regular Expression called TelRegex for that matches with valid telephone numbers

Procedure NewUserFormLoad

 DISABLE newUserBtn

 SET selected index of UserLevel combo box to 0

END Procedure

Procedure BookBtnEnable

 IF Length of UserIDBox != 0 AND password1Box == pasword2Box AND Length of password1Box != 0 THEN

 IF Length of EmailBox == 0 AND Length of TelBox == 0

 OR EmailBox matches EmailRegex AND Length of TelBox == 0

 OR Length of EmailBox == 0 AND TelBox matches TelRegex

 OR EmailBox matches EmailRegex AND TelBox matches TelRegex

 THEN

 ENABLE newUserBtn

 ValidationErrorLabel = “”

 ENDIF

 ELSE

 DISABLE newUserBtn

 ValidationErrorLabel = “One or more fields contain incorrect information”

 ENDELSE

 ENDIF

 ELSE

 DISABLE newUserBtn

 ValidationErrorLabel = “One or more fields contain incorrect information”

 ENDELSE

END Procedure

Procedure ValidateableTextBox_Leave

 IF BackColor of Sender == White OR BackColor of Sender == Green OR Length of text in Sender == 0 THEN

 BackColor of Sender = White

 ENDIF

 ELSE

 BackColor of Sender = OrangeRed

 ENDELSE

 Call BookButtonEnable

END Procedure

Procedure userIDBox_TextChanged

 IF TextLength of Sender != 0 THEN

 BackColor of Sender = Green

 ENDIF

 ELSE

 BackColor of Sender = OrangeRed

 ENDELSE

END Procedure

Procedure password1Box_TextChanged

 IF Text of Sender == password2Box Text THEN

 BackColor of Sender = Green

 ENDIF

 ELSE

 BackColor of Sender = OrangeRed

 ENDELSE

 IF password2Box Text == password1Box Text THEN

 BackColor of password2Box = Green

 ENDIF

 ELSE

 BackColor of password2Box = OrangeRed

 ENDELSE

 Call BookButtonEnable

END Procedure

Procedure cancelbtnClick

 SHOW MessageBox with text “Are you sure you want to cancel?” with title “Cancel?” with Yes and No buttons

 IF Result of MessageBox is Yes THEN

 CLOSE this Form

 ENDIF

END Procedure

Procedure newUserBtnClick

INSERT new Row into UserTable using the values from the controls

UPDATE Database

SHOW MessageBox with text “A new user has been added” with title “Success” with OK button

CLOSE this Form

END Procedure

END Form Procedure

NewRoomForm

Procedure NewRoomForm

CREATE Regular Expression called whiteSpaceRegex for that matches with whitespace only

Procedure AddRoomBtnClick

IF RoomTable does not contain Row with RoomID of roomIDBox AND roomIDBox Trimmed Text != “” THEN

 IF roomIDBox Trimmed Text != “”AND roomTypeBox Trimmed Text != “” AND roomDescripBox Trimmed Text

 != “” THEN

 INSERT new Row in RoomTable WITH values roomIDBox, roomTypeBox and roomDescripBox

 CREATE new rectangle WITH

 Name = roomIDBox

 locationX = 0

 locationY = 0

 sizeX = 100

 sizeY = 100

 penColor = “default”

 ADD Rectangle to rectangles

 FOREACH rectangle in rectangles DO

 CREATE variable thisRectangle of type rectangle = currentrectangle from Foreach

 pencolor of thisRectangle = “default”

 END FOREACH

 String JSON = Serialise rectangles to JSON

 Write JSON to file

 SHOW MessageBox with text “New room was successfully added” with title “Success” with OK

button

 CLOSE this Form

 ENDIF

 ELSE

 SHOW MessageBox with text “Could not add new room. Please check there is data entered in all

boxes” with title “Error” with OK button

 ENDELSE

ENDIF

ELSE

 SHOW MessageBox with text “Could not add new room. Please check there is not already a room with the

same ID and the RoomID field is not empty” with title “Error” with OK button

ENDELSE

END Procedure

Procedure cancelbtnClick

 SHOW MessageBox with text “Are you sure you want to cancel?” with title “Cancel?” with Yes and No buttons

 IF Result of MessageBox is Yes THEN

 CLOSE this Form

 ENDIF

END Procedure

Reporting Pseudocode

Procedure PercentageDefects

Int count = 0

FOR i = 0, I <= TotalRecords, i++ DO

 if Record[i] Resolved == Null THEN

 count++

 ENDIF

END FOR

OUTPUT ((count/TotalRecords)*100)

END Procedure

Procedure DateFormat

 OUTPUT DateField as dateformat dd/mm/yyyy

END Procedure

Procedure calculatePriorityDefectsAll

Int count = 0

FOR i = 0, I <= TotalRecords, i++ DO

 if Record[i] priority is Like “low” THEN

 count++

 ENDIF

END FOR

OUTPUT count

END Procedure

Procedure SetRowColour

Int count = 0

FOR i = 0, I <= TotalRecords, i++ DO

 String SetColor = “No Color”

 IF Record[i] priority is Like “Low” THEN

 SetColor = “LightGreen”

 ENDIF

This IF statement is repeated for each priority type with SetColor set to a different colour for each different priority

END FOR

OUTPUT SetColor

END Procedure

Evaluation

In evaluating my solution, I will consider three main areas: Usability, Suitability and Performance.

Usability:

I shall use a questionnaire to ascertain how user friendly my solution is and how easy it is to navigate and

use by users of various skill levels from both my computing class and from the rest of my school.

The questionnaire will contain several questions for which the usability of the system will be rated against

from 1-5.

I shall consider the usability of the system to be acceptable if most of the questions get a 4 or 5 rating.

The questionnaire I shall use is below:

Task 1
(Very hard)

2
(Difficult)

3
(Average
difficulty)

4
(Easy)

5
(Very easy)

Navigation

Adding a new
Defect

Viewing a
rooms defect

Resolving a
defect

Adding a Room

Printing a
report

Suitability:

I will consider the solution suitable if it meets all the aims set out for it. The solution must meet the set

requirements of the problem. It must be suitable for use in a professional environment

Performance:

I will run tests on many different aspects of the solution to see whether the program functions as

intended and does not break when used. The tests will use normal, extreme, incompatible and non-

existent data.

Calculations must be made correctly.

If no major parts of the system fail the testing process or are very simply fixed, I will consider the

performance of the system successful.

